Making Magnesium a More Cost & Environmentally Competitive Light-Weighting Option

DJ Zuliani, Ph.D.
Douglas Reeson

Presented at 9th International Conference on Magnesium Alloys & Applications (July 8 - 12, 2012)
Light Materials… play increasingly important role in transportation

- **Tighter Fuel Standards**… USA: 6.5 liters /100 km by 2014 decreasing to 4.3 by 2025
- **Electric Vehicles**… need light weight for improved range & performance

Weight Savings… key part of automotive strategy going forward

![Graph showing weight savings] Source Audi

www.gossan.ca
Weight Saving With Magnesium

- Highest Strength to Weight Ratio
- Highest Stiffness to Weight Ratio
- Best Machining Properties of ALL Metals
- Excellent Vibration Damping
- High Dent Resistance

www.gossan.ca
Magnesium... largely single part substitution

USAMP 2004 Study

Exhibit 3.2.2.
Magnesium Components Used in Vehicles (lb.)

<table>
<thead>
<tr>
<th>Original Material</th>
<th>Mg Weight</th>
<th>Weight Saved</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHASSIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Wheels</td>
<td>65</td>
<td>39</td>
</tr>
<tr>
<td>1A Frame Cross Member</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Engine Cradle</td>
<td>34.8</td>
<td>23.7</td>
</tr>
<tr>
<td>Fuel Tank Barrier</td>
<td>8.7</td>
<td>5</td>
</tr>
<tr>
<td>Brackets - Adjustable Pedal</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Brake/Accelerator</td>
<td>2.5</td>
<td>2</td>
</tr>
<tr>
<td>Steering - Wheel</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Columns</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Column Brackets</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>ABS Mounting Bracket</td>
<td>1.3</td>
<td>0.9</td>
</tr>
<tr>
<td>INTERIOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seats - Frame</td>
<td>44</td>
<td>16</td>
</tr>
<tr>
<td>Stanchions (6)</td>
<td>34</td>
<td>13</td>
</tr>
<tr>
<td>NP - X-car beam</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>Knee Bolster</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Console</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Brackets</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Glove Box Door</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>POWERTRAIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine Block 1.6</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Engine Block 1.4</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Automatic Transm</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Intake Manifold</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Transfer Case</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Clutch Housing</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Oil Pan</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Engine Mounting Brackets</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Alternator Bracket</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Carb Cover (5)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Cylinder Head Cover</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Air Intake Housing</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Oil Pump Housing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Power Steering Pump Bracket</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>BODY STRUCTURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door Inner Panels (4)</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Radiator Support/GOR</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Front of Dash Structure</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>LR gate Taper</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Windshield Surround (Frame)</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Targa Roof Frame Opening</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Wiper Motor/support Assembly</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Mirror Housing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Headlight Retainer</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>662</td>
<td></td>
</tr>
</tbody>
</table>

~ 50 different parts
~ 155 major platforms
~ Totaling 380 lbs (173 kg)
~ Ave. car only 5-6 kg Mg

“Single Part Substitution”... limited impact on “Big Picture” Weight Saving Needed in Future (> ~ 100 kg)
Single Part Substitution… falls short of maximum weight savings potential

- Mg parts typically installed by “Substitution”… replace Steel or Aluminum part(s) with a single Mg die cast part

- Impact on “Big Picture” Vehicle Weight Savings is Limited…
 - Single Part Substitution Weight Savings… targeted to specific location & part with few secondary weight savings
 - Mg Use Limited… averages only about 5 - 7 kg per vehicle

Baseline: 2009 Ford F150
USAMP Big Picture …
~155kg Mg parts can provide ~ 222 kg Primary & Secondary Weight Savings (~15% Wt Reduction)

“Big Picture” Mg Wt Saving... requires Multi Material Assemblies
✓ ~ 45% weight saving compared to high performance steel baseline
✓ ~ 60% reduction in number of component parts
✓ ~ 25% weight saving compared to similar Al structure

www.gossan.ca
USAMP... undertaken 3 Phase DEMO Project
• 5 yr project (executed in 3 parts 603, 604, 904)
• $9.2M budget
• 59 international partners

USAMP Project Demonstrated
MAGNESIUM Enabling Technologies

- ✔ Crashworthiness
- ✔ Noise & Vibration
- ✔ Fatigue & Durability
- ✔ Corrosion & Surface Finish
- ✔ Hi Quality Casting & Forming Technology
- ✔ Welding & Joining Technology
- ✔ New Alloys

www.gossan.ca
MAGNESIUM… requirements to seize the “Big Picture” Weight Savings

☑️ CAPABILITY FOR AUTO… Mg assemblies can satisfy automotive requirements
 ✓ Crashworthiness
 ✓ Noise, Vibration & Harshness
 ✓ Fatigue
 ✓ Durability & Corrosion Resistance
 ✓ Joining & Fabrication

☑️ SIGNIFICANT WEIGHT SAVINGS & DESIGN SIMPLICITY…
 Mg Assemblies… significant weight savings over Steel (~50%) & Al (~25%)
 Design Simplicity… significant reduction in number of parts

☑️ SIGNIFICANT ALLOYING & PROCESSING R&D UNDERWAY… as reported
 ✓ Corrosion Resistance… Hi Purity alloys, Coatings & Galvanic resistant designs
 ✓ Hi Temp Creep & Flammability Resistant Alloys… RE, Ca, Sr, Sn, Y, CaO
 ✓ Joining Technologies… TIG & Laser welding, adhesives & mechanical fastener
 ✓ Mg Sheet… improved conventional slab & twin roll processing methods for high strength & elongation sheet alloys
 ✓ Formability… improved room temperature sheet formability & laser hemming

www.gossan.ca
Magnesium industry undergone TWO competitive paradigm shifts

Before ~ 1990 China Produced No Magnesium... Dow, Norsk Hydro, US Mag, Northwest Alloys (Alcoa) & Pechiney dominated production

- Price Mg > 1.50 times Price Al

“First Paradigm Shift” began in ~ 1990... led by lower labor costs in China. Rapidly declining prices & relocation of production base from the West to China

- Price Mg < Price Al

Today China is producing > ~80% of world’s Mg...
Dead Sea (Israel), US Mag, RIMA (Brazil) & few former Soviet based plants are only remaining western producers

REMAINING SUCCESS FACTORS for MAGNESIUM

Needs to be Competitive with Other Light Weight Materials particularly Aluminum

- Price ... Price Competitiveness requires Operating Cost Competitiveness
- Environmental... Life Cycle Competitiveness

Magnesium... alloying & downstream
R&D impressive BUT competitiveness will be deciding factor determining Mg demand

www.gossan.ca
Magnesium Production...
USGS Data +6.9% CAGR (1994 – 2011)

N. America

Europe

CIS

China

1994
267,000 MT

2011 (est)
825,000 MT

59%

15%

18%

4%

6%

3%

7%

4%

2%
Concentrated Chinese Mg Production... dramatic & fundamental impact on market dynamics

- China shifting to a deregulated free market economy...
 fundamental upwards shift in energy, materials & labor costs

<table>
<thead>
<tr>
<th>Commodity</th>
<th>% Increase (2005-2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Coal</td>
<td>~ 450%</td>
</tr>
<tr>
<td>Electricity</td>
<td>~100%</td>
</tr>
<tr>
<td>Ferrosilicon</td>
<td>~ 60%</td>
</tr>
<tr>
<td>Labor Hourly Rate</td>
<td>> 250 – 350%</td>
</tr>
</tbody>
</table>

Based on Published Data

Chinese Mg Production Costs ... have risen sharply since 2005

Between 2005 to 2011
Cost of Mg Ingot “Delivered” to EU & NA Markets
Has Essentially Doubled

www.gossan.ca
Today’s Higher Magnesium Prices

... reflect fundamentally higher Chinese production & transportation costs

- Chinese Magnesium
 - Prices just above “Cash Costs”
 - Margins are Very Low

First Paradigm Shift

Second Paradigm Shift

Published Free Market Year End Mg Price Landed in West

~ Cost of Chinese Mg FOB EU & NA Port

www.gossan.ca
Magnesium’s Competitive Position vis-à-vis Aluminum

Non Structural Parts – Straight Density based Substitution

Structural Parts Increased Thickness – Mechanical Property based Substitution

Mg to Al Competitive Price Point

% Weight Savings with Mg

www.gossan.ca
Free Market Mg Competitive Position

... deteriorated compared to aluminum & growth has suffered

1st Paradigm Shift...
High Growth CAGR (2000-2007): 10.7%

2nd Paradigm Shift...
Low Growth CAGR (2007-2011): 1%

Based on Year End Prices
- Free Market Mg landed in West
- LME Al Price

Competitive Point...
Al/Mg Density

Better Competitive Point
What Can Mg Free Markets Expect? Given Concentrated Chinese Production

Future Magnesium Pricing???

- **Chinese Inflation Upward Pressures**
 Increasing prices for coal, electricity, oil & labor

- **Mg Margins are Low**
 Mg Price expected to move in step with Chinese inflation

- **Mg to Al Price Ratio**
 "could be under increasing Upwards Pressure as production base for Al much more diverse than for Mg"

Free Market Year End Mg Price

- **Mg Year-end Price US$/MT**
 - '96, '97, '98, '99, '00, '01, '02, '03, '04, '05, '06, '07, '08, '09, '10, '11

- **Cost of Chinese Mg FOB EU & NA Port**
USA Magnesium’s Competitive Position… even worse vis-à-vis aluminum

Based on Year End Prices
- Published Free Market & US Mg Prices
- LME Al Price

Mg Increasingly Less Competitive … When Auto Increasingly Looking for Light Weight Solutions
Mg Environmental Competitiveness...

- China ~ 80% world’s Magnesium.... 1940 vintage Pidgeon Process

- Chinese Pidgeon Process is Labor & Energy Intensive...
 - FeSi (50% of Mg Cost)… electricity generated from coal
 - Mg Production… uses coal or coal gas

<table>
<thead>
<tr>
<th>Production</th>
<th>Process (Location)</th>
<th>GWP Kg CO2/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium</td>
<td>China – Coal</td>
<td>43.3</td>
</tr>
<tr>
<td></td>
<td>China – COG (IMA)</td>
<td>26.2</td>
</tr>
<tr>
<td>Aluminum</td>
<td>Average</td>
<td>12.7</td>
</tr>
<tr>
<td></td>
<td>North America</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td>Europe</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>China</td>
<td>24.7</td>
</tr>
</tbody>
</table>
MAGNESIUM KEY SUCCESS FACTORS… to Seize Auto Opportunity

- PROVEN CAPABILITY FOR AUTO… as verified by USAMP study,
 - Crashworthiness
 - Noise, Vibration & Harshness
 - Fatigue
 - Durability & Corrosion
 - Joining & Fabrication

- SIGNIFICANT WEIGHT SAVINGS & DESIGN SIMPLICITY
- SIGNIFICANT ALLOYING & SHEET PROCESSING R&D BREAKTHROUGHS

??? REMAINING SUCCESS FACTORS… require new production technology that is competitive with other Light Weight Materials particularly with Aluminum
 ? Price … Impacts on Price of increasing operating costs
 ? Environmental… Life Cycle Competitiveness

www.gossan.ca
Gossan Resources Magnesium Project... 1st Advantage is Location & High Quality Ore Reserves

- **Strategic Manitoba Location**… mid-continent trade corridor with excellent access to NAFTA & EU
- **Extensive high purity Dolomite & Quartz reserves**… for Mg & FeSi Production
- **Measured Dolomite resource**… ~100,000 MT Mg metal per year for 30 years

www.gossan.ca
Gossan’s Magnesium Project…

2nd Advantage is Electricity

Manitoba…
Among World’s Lowest, Most Stable Pricing & Cleanest Electricity

US Cents per kWh

100% Hydro

Manitoba, Quebec, Utah, Nevada, Korea, China, France

www.gossan.ca
Develop Breakthrough Magnesium Technology…
a novel Thermal Process has been developed on basis of extensive Mg process & technology experience

Breakthrough Technology… targets major issues with EXISTING Magnesium Thermal Processes

► **Poor FeSi & Dolomite Utilization Efficiencies**… target improved raw material efficiencies to lower material costs, reduce by-product waste & lower energy

► **Costly & Complex Process**… target elimination of vacuum & large number of small scale high Ni alloy retorts to reduce cost of consumables, maintenance & labor

► **Solid Mg Condensation**… target molten Mg condensation to reduce energy, improve % yield & increase productivity

► **High GHG Emissions**… target improved life cycle attractiveness to be competitive with other materials especially Aluminum

www.gossan.ca
Gossan’s Magnesium Project...
3rd Advantage Breakthrough Technology

EXECUTION PLAN

Develop Breakthrough Process Concept
- Increase raw materials utilization efficiency
 - Reduce energy consumption
- Minimize labor & process complexities
 - Increase %yield & recoveries
 - Continuous Process
- Competitive cost & environmentally with Al

Confirm Process Fundamentals Correct
- Thermodynamics
 - Kinetics

Experimental Confirmation
- Bench Scale Testing... confirm modeling
- Larger Scale Testing... material flow

Pilot Scale Demonstration

STATUS

☑️ Breakthrough process conceived...
signed contracted Gossan 2007

☑️ Detailed Cost Modeling indicated
 - 25 – 30% advantage... over Chinese Mg cost
 - Cost... within 1.3 Mg to Al
 “Competitive Cost Ratio Target”

☑️ FactSage Thermodynamic Modeling...
 Prof Pelton Ecole Polytechnique Montreal
 Confirmed fundamentally sound

☑️ Bench Scale Trials... Process Research ORTECH
 Test & Modeling results agree
 Larger Scale Tests underway

Planning 5,000 MT semi-commercial facility

www.gossan.ca
Reduction of Calcined Dolomite to Produce Magnesium Vapor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measure</th>
<th>Experimental Mass Balance</th>
<th>Thermodynamic FACT Model</th>
<th>Delta %</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeSi Balance</td>
<td>Weight Consumed by reaction</td>
<td>25.0</td>
<td>25.3</td>
<td>1.2%</td>
</tr>
<tr>
<td>By-Product Balance</td>
<td>Weight Produced by reaction</td>
<td>131.3</td>
<td>130.1</td>
<td>0.9%</td>
</tr>
<tr>
<td></td>
<td>Molar CaO/ SiO2</td>
<td>1.98</td>
<td>2.04</td>
<td>2.9%</td>
</tr>
<tr>
<td>Mg Balance</td>
<td>Weight Produced by reaction</td>
<td>34.0</td>
<td>33.8</td>
<td>0.6%</td>
</tr>
<tr>
<td>Efficiency Factors</td>
<td>Mg Produced per Si Consumed</td>
<td>1.63</td>
<td>1.63</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>% Si Efficiency</td>
<td>94.4%</td>
<td>94.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td></td>
<td>% Mg Recovery</td>
<td>92.9%</td>
<td>92.3%</td>
<td>0.6%</td>
</tr>
</tbody>
</table>

Method Patent Filed...

1st US Provisional patent filed June 2011
2nd US Provisional patent filed April 2012

www.gossan.ca
Comparison of Mg Processes

<table>
<thead>
<tr>
<th>Process Comparison to produce 1 kg Mg ingot</th>
<th>Pidgeon Process CHINA</th>
<th>GOSSAN CANADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Magnesium Production</td>
<td>~ 80%</td>
<td>NA</td>
</tr>
<tr>
<td>Process Dynamics</td>
<td>Solid State</td>
<td>Molten State</td>
</tr>
<tr>
<td>Reduction Reactor Pressure</td>
<td>Vacuum</td>
<td>Atmospheric</td>
</tr>
<tr>
<td>Mg Recovery – from calcined ore</td>
<td>~ 74.0%</td>
<td>90.4%</td>
</tr>
<tr>
<td>Silicon Efficiency</td>
<td>~ 64.8%</td>
<td>91.9%</td>
</tr>
<tr>
<td>Production Cost Ratio</td>
<td>1.00</td>
<td>0.70 – 0.75</td>
</tr>
<tr>
<td>GHG – kg CO2 per kg Mg</td>
<td>26.2 ** - 43.3 *</td>
<td>9.1 **</td>
</tr>
<tr>
<td>LCA – breakeven, thousand km</td>
<td>171.6 – 275.6 ***</td>
<td>69.5***</td>
</tr>
</tbody>
</table>

- ** IMA with COG (2012)
- *** Based on 222 kg weight saving from 154 kg Mg following method of F.D’Errico et al. JOM, Vol. 61, No.4, 2009

Magnesium Very Competitive with Aluminum

LCA Breakeven 69,500 km

Reduces Emissions ~7% Over 200,000 km car life

www.gossan.ca
Gossan Magnesium Project…
Next Steps & Timelines

<table>
<thead>
<tr>
<th></th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Scale Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financing or JV Partnership</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Permitting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilot Design, Construction & Commissioning (5,000 tpa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilot Demonstration Plant (operation, customer development)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Permitting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Engineering & Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Scale Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preliminary estimate subject to commercialization of the Zuliani process, financing, permitting and other risks

www.gossan.ca
Summary

Recent R&D... confirms Mg can be significant player in lightweight vehicles
 ✓ Addresses Technical Capabilities for Auto
 ✓ Confirms Significant Weight Savings & Reduction Number of Parts
 ✓ Alloing & Downstream Process Breakthroughs

Mg production dominated by China (~80%)
 ? Production Cost & “Mg to Al” Price Ratio
 ? Mg Prices Ongoing Upward Pressure
 ? “Mg to Al” Price Ratio Upward Pressure
 ? Environmental GWP & LCA

Gossan’s Breakthrough Magnesium Technology
 ✓ Significant Improved Process Efficiencies... production cost 25 - 30% less
 than China & within target 1.3 Mg/Al competitive production cost ratio
 ✓ Environmentally Competitive... favorable GWP & LCA compared to Al
 ✓ Gossan Resources Mg Project... favorable western location, high quality
 dolomite resource & exceptionally low and stable electricity rates

www.gossan.ca